The Synthesis of 3,5,6,7-Tetrasubstituted Isoxazolo[4,5-B]Pyridines and an Evaluation of Their In Vitro Antiproliferative Activity

Synteza 3,5,6,7-tetrapodstawionych izoksazolo[4,5-b]pirydyn i badanie ich aktywności antyproliferacyjnej

Abstract

Background. Derivatives of isoxazolopyridines exhibit diverse biological activity. One method of synthesizing isoxazolo[4,5-b]pyridines is Friedländer condensation.

Objectives. To establish the conditions necessary for conventional and microwave synthesis of new 3,5,6,7-tetrasubstituted isoxazolo[4,5-b]pyridines and their antiproliferative activity.

Material and Methods. The substrates in the synthesis of new isoxazolo[4,5-b]pyridines were 4-amino-5-benzoyleoisoxazolo-3-carboxamide and selected carbonyl compounds containing a reactive α-methylene group. Reactions were carried out using classical methods in the presence of catalysts ZnCl$_2$ or In(OTf)$_3$, and in a microwave reactor in the presence of ZnCl$_2$ under solvent-free conditions. Selected compounds were tested in vitro on eight tumor cell lines to assess their antiproliferative activity.

Results and Discussion. A series of new derivatives of 3,5,6,7-tetrasubstituted isoxazolo [4,5-b]pyridines was obtained from Friedländer condensation of 4-amino-5-benzoyleoisoxazolo-3-carboxamide with selected carbonyl compounds with an active methylene group. The compounds were obtained by conventional and microwave methods, in the presence of catalysts ZnCl$_2$ or In(OTf)$_3$. The structures of the products were determined on the basis of elemental analysis and infrared (IR), Nuclear Magnetic Resonance (1H NMR) and Mass Spectrometry (MS) data. Selected compounds were tested in vitro on eight tumor cell lines in the direction of antiproliferative activity.

Conclusions. Only the use of conventional heating in a thermostated oil bath in the presence of catalysts ZnCl$_2$, or In(OTf)$_3$, or microwave irradiation in the presence ZnCl$_2$ in the solvent-free conditions allowed good yields of the new derivatives of poly-substituted isoxazolo[4,5-b]pyridines to be obtained. Among the compounds tested in vitro only 6-benzoyl-5,7-difenyleisoxazolo[4,5-b]pyridine showed antiproliferative activity at a concentration of 3.9 μg/ml (Adv Clin Exp Med 2012, 21, 5, 563–571).

Key words: isoxazolopyridines, microwave synthesis, antitproliferative activity.
As a continuation of the authors’ research [1–3] into the synthesis of bicyclic heteroaromatic systems containing the biologically active moiety of isoxazole, several new derivatives of substituted isoxazolo[4,5-b]pyridine were synthesized. Previously obtained derivatives of 5-alkyl-6,7-diphenyl-4,5,6,7-tetrahydroisoxazolo[4,5-d]pyrimidine-3-carboxamides revealed antidepressive activity [1, 2] and 3-chloroacetyl-, 3-(2-bromopropionylamino)isoxazolo[5,4-b]pyridine [3] and 3-benzylisoxazolo[4,3-d]pyrimidine-3-formamidine were found to have antiproliferative activity in vitro against cancer cells lines [4].

The derivatives of isoxazolopyridine have interesting biological properties. Isoxazolo[5,4-b]pyridines show antibacterial [5], antiviral [6], muscle relaxant and anticonvulsant [7] and analgesic [8]. Derivatives of isoxazolo[4,3-b]pyridines (THIP and THOPO) have been investigated in clinical studies and show anxiolytic activity [9–11]. Many techniques of Friedländer condensation have previously been reported for the synthesis of a variety of substituted quinoline derivatives [12–14], imidazo[4,5-b]pyridines [15] and pyrazolo[3,4-b]pyridines [16]. Friedländer condensation is one of the simplest and most efficient methods of synthesis. It entails the condensation of o-aminoketones or o-aminokaryl aldehydes with a carbonyl compound containing a reactive α-methylene moiety. Synthesis is carried out in polar solvents in the presence of ZnCl2, a base [18] or Brønsted moiety. Synthesis was performed in a laboratory microwave oven with a Finningan Mat 95 gC-MS (Finningan, Bremen, Germany) and the results are within ±0.4% of the theoretical values obtained for the new compounds. Infrared (IR) spectra were recorded with a Specord M80 spectrophotometer (Zeiss/Analytic Jena, Germany) for KBr pellets. Hydrogen-1 NMR (1H NMR) spectra were recorded with a Bruker Avance ARX-300 instrument (Bruker Analytic, Karlsruhe, Germany) using DMSO-d6 or CDCl3 as internal standards. Chemical shifts are reported in ppm from the internal tetramethylsilane reference. Mass spectra (MS) were recorded on a Finnigan Mat 95 GC-MS (Finnigan, Bremen, Germany) with an ionization energy of 70 eV. The progress of the reaction and the purity of the compounds were monitored using thin layer chromatography (TLC) on analytical silica gel plates (Merck F254, Darmstadt, Germany). Microwave-assisted synthesis was performed in a laboratory microwave RM 800PC reactor (Plazmatronika, Wroclaw, Poland). Water was purified using an Aquadem SDF-Ion exchanger system (TKA, Thermo Scientific). All chemicals and reagents for the synthesis were obtained from Alfa Aesar (Karlsruhe, Germany), Lancaster Synthesis (Morecambe, England) and Chempur (Piekary Śląskie, Poland).

Material and Methods

Melting points were determined with a Boethius apparatus and are uncorrected. Elemental analyses were performed on a Perkin Elmer 2400 analyzer (Waltham, MA, USA) and the results are within ±0.4% of the theoretical values obtained for the new compounds. Infrared (IR) spectra were recorded with a Specord M80 spectrophotometer (Zeiss/Analytic Jena, Germany) for KBr pellets. Hydrogen-1 NMR (1H NMR) spectra were recorded with a Bruker Avance ARX-300 instrument (Bruker Analytic, Karlsruhe, Germany) using DMSO-d6 or CDCl3 as internal standards. Chemical shifts are reported in ppm from the internal tetramethylsilane reference. Mass spectra (MS) were recorded on a Finnigan Mat 95 GC-MS (Finnigan, Bremen, Germany) with an ionization energy of 70 eV. The progress of the reaction and the purity of the compounds were monitored using thin layer chromatography (TLC) on analytical silica gel plates (Merck F254, Darmstadt, Germany). Microwave-assisted synthesis was performed in a laboratory microwave RM 800PC reactor (Plazmatronika, Wroclaw, Poland). Water was purified using an Aquadem SDF-Ion exchanger system (TKA, Thermo Scientific). All chemicals and reagents for the synthesis were obtained from Alfa Aesar (Karlsruhe, Germany), Lancaster Synthesis (Morecambe, England) and Chempur (Piekary Śląskie, Poland).
Conventional Conditions

Method A (in solution): 6-Acetyl-5-methyl-7-phenylisoxazolo[4,5-b]pyridine-3-carboxamide (4)

Acetyleacetone (0.025 mole) was added to a solution of 0.01 mole of 4-amino 5-benzoylisoxazole-3-carboxamide (1) in 100 ml glacial acetic. The reaction mixture was refluxed for 24 hours. The solvent was distilled under vacuum and the residue was mixed with 100 ml of water. The resulting precipitate was filtered, dried and recrystallized from ethanol to give 4 as colorless crystals (mp. 225–226°C, yield 58%).

IR (KBr) ν = 3390, 3180 (NH, CH), 1710 (CO), 1690, 1680 (CONH2) cm–1; 1H NMR (CDCl3) δ = 2.14 (s, 3H, CH3), 2.60 (s, 3H, CH3), 7.52-7.61 (m, 5H, Ph), 8.37 (br s, 2H, CONH2) ppm; MS: (70 ev, electron impact) m/z 295 (molecular ion). Anal. Calcd. for C16H13N3O3 (295.30): C 65.08, H 4.44, N 14.23; Found: C 64.80, H 4.31, N 14.08.

Method B (solvent-free)

The compound 4-amino-5-benzoylisoxazole-3-carboxamide (1) (0.01 mole), selected methylene compound (0.015 mole) and anhydrous ZnCl2 (0.01 mole) or In(OTf)3 were mixed thoroughly in a mortar. The reaction mixture was then transferred to a round-bottomed flask and heated, while stirring, at 125-130º for 8-16 hours in an oil bath. After cooling to room temperature, 50 ml of ethyl ether was added to the reaction mixture and stirring was continued for 1 hour. The obtained precipitate was filtered off. Then 100 ml of water was added to the solid and stirred for 1 hour. The precipitate formed was filtered and washed with cold water, dried and recrystallized.

Microwave Conditions

Method C

A mixture of 4-amino-5-benzoyl-isoxazole-3-carboxamide (1) (0.01 mole), a selected methylene compound (0.015 mole) and 2.4 g of anhydrous ZnCl2 were mixed thoroughly in a mortar. The reaction mixture was heated while being stirred in the microwave reactor in an aluminum bath at 60-65°C for 15 minutes (3 x 5 min with 1-minute breaks, at microwave power P = 240 W). After cooling to room temperature, 100 ml of ethyl ether was added to the reaction mixture and stirring was continued for 1 hour. The precipitate was filtered. To the resulting precipitate 100 ml of distilled water was added and then stirred for 30 minutes. The precipitate was filtered, washed with distilled water, dried and recrystallized.

 Compound 2 was also obtained by procedure B. In the presence of ZnCl2 the yield was 75%; in the presence of In (OTf)3, the yield was 76%. By the microwave procedure C, the yield was 80%.

5,7-Diphenylisoxazolo[4,5-b]pyridine-3-carboxamide (2)

This compound was obtained by condensing compound 1 with acetophenone. Using procedure B in the presence of ZnCl2 the yield was 77%; in the presence of In (OTf)3 the yield was 76%. Using the microwave method (C) the yield was 80% as colorless mp 219–220°C (from ethanol). IR (KBr) ν : 3300, 3100 (CH, NH), 1680, 1580 (CONH2) cm–1; 1H NMR (DMSO-d6): δ = 7.50–7.75 (m, 10H, phenyl protons), 8.30 (br s, 2H, CONH2), 8.5 (s, 1H, CH) ppm; MS: m/z = 315 (molecular ion). Anal. Calcd. for C19H13N3O2 (315.33): C, 72.37; H, 4.16; N, 13.33. Found: C, 72.27; H, 4.19; N, 13.18.

5-(4-Bromophenyl)-7-phenylisoxazolo[4,5-b]pyridine-3-carboxamide (3)

This compound was obtained by condensing compound 1 with 4-bromoacetophenone. Using procedure B in the presence of ZnCl2 the yield was 68%; in the presence of In (OTf)3 the yield was 67%. Using the microwave method (C) the yield was 78% as colorless mp 179-180°C (from ethanol). IR (KBr) ν = 3200, 3100 (CH, NH), 1680, 1580 (CONH2) cm–1; 1H NMR (DMSO-d6): δ = 7.376–7.75 (m, 9H, phenyl protons), 8.36 (br s, 2H, CONH2), 8.5 (s, 1H, CH) ppm; MS: m/z = 394 (molecular ion). Anal. Calcd. for C19H12N3BrO2 (394.23): C, 57.89; H, 3.07; N, 10.66. Found: C, 57.95; H, 3.27; N, 10.46.

6-Benzoyl-5-methyl-7-phenylisoxazolo[4,5-b]pyridine-3-carboxamide (5)

This compound was obtained by condensing compound 1 with benzoylacetone. Using procedure B in the presence of ZnCl2 the yield was 68%; in the presence of In (OTf)3 the yield was 70%. Using the microwave method (C) the yield was 85% as colorless mp 158°C (from ethanol). IR (KBr) ν = 3200, 3100 (NH, CH), 1705 (CO), 1680, 1610 (CONH2) cm–1; 1H NMR (DMSO-d6): δ = 2.48 (s, 3H, CH3), 7.36–7.70 (m, 10H, phenyl protons), 8.41 (br s, 2H, NH2), 8.41 ppm; MS: m/z = 357 (molecular ion). Anal. Calcd. for C21H15N3O3 (357.37): C, 70.58; H, 4.23; N, 11.76. Found: C, 70.35; H, 4.23; N, 11.76.

6-Benzoyl-5,7-diphenylisoxazolo[4,5-b]pyridine-3-carboxamide (6)

This compound was obtained by condensing compound 1 with dibenzoylmethane. Using procedure B in the presence of ZnCl2 the yield was 75%; in the presence of In (OTf)3, the yield was 76%. By the microwave procedure C, the yield was 80%.
procedure B in the presence of ZnCl₂ the yield was 71%; in the presence of In (OTf)₃, the yield was 70%. Using the microwave method (C) the yield was 85% as colorless mp 213–215°C (from ethanol). IR (KBr) ν: 3300, 3100 (NH, CH), 1720 (CO), 1680, 1580 (CONH₂) cm⁻¹; ¹H NMR (DMSO-d₆) δ = 7.25–7.59 (m, 15H, phenyl protons), 8.40 (br s, 2H, NH₂); MS: m/z = 419 (molecular ion). Anal. Calcd. for C₂₆H₁₇N₃O₃ (419.44): C, 74.45; H, 4.09; N, 11.02. Found: C, 74.10; H, 4.19; N, 10.01.

6-Acetyl-7-phenyl-5-trifluoromethylisoxazolo[4,5-b]pyridine-3-carboxamide (7)

This compound was obtained by condensing compound 1 with 1,1,1-trifluoroacetylacetone. Using procedure B in the presence of ZnCl₂ the yield was 68%; in the presence of In (OTf)₃ the yield was 72%. Using the microwave method (C) the yield was 86% as colorless mp 176–179°C (from ethanol). IR (KBr) ν = 3360, 3080 (CH, NH), 1700 (CO), 1680, 1620 (CONH₂) cm⁻¹; ¹H NMR (DMSO-d₆): δ = 2.65 (s, 3H, CH₃), 7.36–7.75 (m, 5H, phenyl protons), 8.46 (br s, 2H, CONH₂) ppm, MS: m/z = 349 (molecular ion). Anal. Calcd. for C₁₆H₁₀N₃F₃O₃ (349.27): C, 55.02; H, 2.89; N, 12.03. Found: C, 55.17; H, 2.01; N, 12.34.

6-Acetyl-5-chlorodifluoromethyl-7-phenylisoxazolo[4,5-b]pyridine-3-carboxamide (8)

This compound was obtained by condensing compound 1 with 1-chloro-1,1-difluoroacetylacetone. Using procedure B in the presence of ZnCl₂ the yield was 75%; in the presence of In (OTf)₃ the yield was 76%. By the microwave method (C) the yield was 80% as colorless mp 176–177°C (from ethanol). IR (KBr) ν = 3300, 3000 (CH, NH), 1700 (CO), 1680, 1620 (CONH₂) cm⁻¹; ¹H NMR (DMSO-d₆): δ = 2.65 (s, 3H, CH₃), 7.36–7.75 (m, 5H, phenyl protons), 8.46 (br s, 2H, CONH₂) ppm, MS: m/z = 365 (molecular ion). Anal. Calcd. for C₁₆H₁₀N₃F₂ClO₃ (365.72): C, 55.55; H, 2.76; N, 11.49. Found: C, 55.51; H, 2.65; N, 11.45.

7-Phenyl-6-phenylcarbamoyl-5-methylisoxazolo[4,5-b]pyridine-3-carboxamide (9)

This compound was obtained by condensing compound 1 with acetylacetanilide. Using procedure B in the presence of ZnCl₂ the yield was 67%; in the presence of In (OTf)₃, the yield was 76%. Using the microwave method (C) the yield was 80% as colorless mp 144–145°C (from ethanol). IR (KBr): 3300, 3100 (CH, NH), 1680, 1580 (CONH₂) cm⁻¹; ¹H NMR (DMSO-d₆): δ = 2.75 (s, 3H, CH₃), 7.26–7.75 (m, 10H, phenyl protons), 8.24 (br s, 2H, CONH₂), 10.5 (s, 1H, NH) ppm, MS: m/z = 372 (molecular ion). Anal. Calcd. for C₂₆H₁₇N₃O₃ (372.38): C, 67.73; H, 4.33; N, 15.05. Found: C, 67.40; H, 4.50; N, 15.21.

Ethyl-7-phenyl-5-methylisoxazolo[4,5-b]pyridine-6-carboxylate (10)

This compound was obtained by condensing compound 1 with ethyl acetoacetate. Using procedure B in the presence of ZnCl₂ the yield was 67%; in the presence of In (OTf)₃, the yield was 70%. Using the microwave method (C) the yield was 85% as colorless mp 148–149°C (from ethanol). IR (KBr) ν = 3390, 3000 (CH, NH), 1730 (COOR), 1690, 1570 (CONH₂), 1210 (COOR) cm⁻¹; ¹H NMR (CDCl₃): δ = 1.05 (t, J = 7.2 Hz, 3H, CH₃), 2.78 (s, 3H, CH₃), 4.20 (q, J = 7.2 Hz, 2H, CH₂), 7.51–7.61 (m, 5H, phenyl protons), 8.39 (br s, 2H, CONH₂) ppm, MS: m/z = 325 (molecular ion). Anal. Calcd. for C₁₇H₁₅N₃O₄ (325.32): C, 62.76; H, 4.66; N, 13.08.

Ethyl 5,7-diphenylisoxazolo[4,5-b]pyridine-6-carboxylate (11)

This compound was obtained by condensing compound 1 with ethyl benzoylacacetate. Using procedure B in the presence of ZnCl₂ the yield was 65%; in the presence of In (OTf)₃, the yield was 66%. Using the microwave method (C) the yield was 80% as colorless mp 163–164°C (from ethanol), mp 161–164°C. IR (KBr) ν = 3290, 3000 (CH, NH), 1730 (COOR), 1680, 1590 (CONH₂), 1210 (COOR) cm⁻¹; ¹H NMR (DMSO-d₆): δ = 0.96 (t, J = 7.2 Hz, 3H, CH₃), 4.0 (q, J = 7.2 Hz, 2H, CH₂), 7.45–7.65 (m, 10H, phenyl protons), 8.36 (br s, 2H, CONH₂) ppm, MS: m/z = 387 (molecular ion). Anal. Calcd. for C₂₂H₁₇N₃O₄ (387.39): C, 68.21; H, 4.42; N, 10.85. Found: C, 68.47; H, 4.48; N, 10.52.

Ethyl-5-chloromethylene-7-phenylisoxazolo[4,5-b]pyridine-6-carboxylate (12)

This compound was obtained by condensing compound 1 with ethyl 2-chloroacetoacetate. Using procedure B in the presence of ZnCl₂ the yield was 63%; in the presence of In (OTf)₃, the yield was 66%. Using the microwave method (C) the yield was 70% as colorless, mp 280–282°C (from methoxyethanol). IR (KBr) ν = 3280, 3100 (CH, NH), 1760 (COOR), 1680, 1560 (CONH₂), 1445, 1260 (CH₂Cl) cm⁻¹; ¹H NMR (DMSO-d₆): δ 1.05
δ = 6.50 (br s, 2H, NH2), 7.27–7.68 (m, 5H, phenyl protons), 8.35 (br s, 2H, CONH2) ppm. Anal. Cdcd. for C17H14N3ClO4 (359.77): C, 56.76; H, 3.92; N, 25.08. Found: C, 60.05; H, 3.41; N, 25.38.

5-Amino-6-cyano-7-phenylisoxazolo[4,5-b]pyridine-3-carboxamide (13)*

This compound was obtained by condensing compound 1 with malononitrile. Using procedure B in the presence of ZnCl2, the yield was 63%; in the presence of In (OTf)3, the yield was 66%. Using the microwave method (C) the yield was 70% as colorless, mp 280–282°C (from methoxyethanol). IR (KBr) ν = 3280, 3100 (CH, NH), 2200 (CN), 1680, 1560 (CONH2) cm–1; 1H NMR (DMSO-d6): δ = 6.50 (br s, 2H, NH2), 7.27–7.68 (m, 5H, phenyl protons), 8.35 (br s, 2H, CONH2) ppm. Anal. Cdcd. for C14H9N5O2 (279.26): C, 60.21; H, 3.25; N, 25.89.

Results and Discussion

Biology Antiproliferative Assay in vitro

The Compounds. The compounds 2–13 were examined in an in vitro screening assay. Test solutions of the compounds (1 mg/ml) were prepared ex tempore for each test by dissolving them in 100 µl of DMSO + 900 µl of culture medium. After that, the compounds were diluted in the culture medium (described below) to obtain final concentrations of 100, 10, 1 and 0.1 µg/ml.

The Cell Lines. Cells of the following human cancer lines were used: MES-SA (uterine carcinoma), HCV 29T (transitional epithelial cells), KB (human nasopharynx carcinoma), SW707 or LoVo (colon adenocarcinoma), KBV7 or LoVo (lung adenocarcinoma), LLC (lung cancer). All the lines were obtained from the American Type Culture Collection (Rockville, Maryland, USA) and cultured in the Cell Culture Collection of the Department of Tumor Immunology at the Institute of Immunology and Experimental Therapy in Wroclaw, Poland. Human uroepithelial cell line HCV29T, established at the Fibiger Institute (Copenhagen, Denmark) was obtained from Dr. J. Kieler in 1982. The established in vitro murine Lewis lung cancer (LLC) cell line was also used.

Twenty-four hours before the addition of the tested agents, the cells were plated in 96-well plates (Sarstedt, USA) at a density of 10^4 cells per well. The cells were cultured in the opti-MEM medium supplemented with 2mM glutamine (Gibco, Warsaw, Poland), streptomycin (50 µg/ml), penicillin (50U/ml) (both antibiotics from Polfa, Tarchomin, Poland) and 5% fetal calf serum (Gibco, Grand Island, USA). The cell cultures were maintained at 37°C in humid atmosphere saturated with 5% CO2.

The Sulforhamidine (SRB) Assay. The cytotoxic assays were performed after 72-hour exposure of the cultured cells to varying concentrations (from 0.1 to 100 µg/ml) of the tested agents. The SRB method was used as described by Skehan et al. [31]. The optical densities of the samples were measured on a Multiskan RC photometer (Lab systems, Helsinki, Finland) at 70 nm. The results were calculated as an inhibitory dose 50% (ID50) – the dose of compound which inhibits proliferation rate of the tumor cells by 50% as compared to untreated control cells. Each compound was tested in triplicate in every concentration for each experiment. Every experiment was repeated three times.

The synthesis of new isoxazolo[4,5-b]pyridine derivatives 2–13 is presented in Fig. 1. 4-Amino-5-benzoylisoxazole-3-carboxamide (1) [20] was subjected to Friedländer condensation with selected carbonyl compounds containing a reactive α-methylene group, such as α-methylene ketones (acetophenone, p-bromoacetophenone), β-diketones (acetylacetone, benzoylacetonate, dibenzoylmethane, 1,1,1-trifluoroacetylacetone, 1-chloro-1,1-difluoro-acetylacetone and acetylacetonide) and β-keto esters (ethyl acetoacetate, ethyl benzoylacetate and ethyl 2-chloroacetoacetate) or malononitrile. The reactions were carried out in boiling acetic acid solution, or at higher temperatures in the presence of anhydrous ZnCl2 or In(OTf)3, as catalysts, or under solvent-free conditions. For comparison, these reactions were carried out using Microwave-Assisted Organic Synthesis (MAOS) in the presence of the same catalysts. In a typical case, a molar equivalent of substrates 4-amino-5-benzoylisoxazole-3-carboxamide, α-methylene compounds and catalyst were mixed and then irradiated in a microwave reactor at 240 W for several minutes as required to complete the reaction (determined by TLC).

Only heating the 4-amino-5-benzoylisoxazole-3-carboxamide (1) with acetylacetone in refluxing acetic acid resulted in a good yield of 6-acetyl-5-methyl-7-phenylisoxazolo[4,5-b]pyridine-3-carboxamide (2) (method A). In the 1H NMR spectrum of this compound, in addition to the signals of aromatic protons, three-proton singlets at δ = 2.14 ppm and δ = 2.60 ppm are found, representing two methyl groups. The broad signal at δ = 8.37 ppm corresponds to the protons of the amide group.
However, when o-amino ketone 1 was heated with selected α-methylene ketones, β-diketones and β-keto esters or malononitrile in boiling acetic acid, trace amounts of products 2–13 were obtained. In all cases, the starting compound 1 was isolated from the reaction mixture almost quantitatively. However, good yields of all the desired products (2–13) were obtained by heating o-amino ketone 1 with the aforementioned carbonyl compounds containing a reactive methylene group, in the presence of catalysts – ZnCl₂ or In(OTf)₃ – under solvent-free conditions. These reactions were carried out in a conventional manner, in a thermostated oil bath at 125–130°C for 8–16 hours and under microwave irradiation at 60–65°C for 15 minutes with same catalysts, under solvent-free conditions. The results are summarized in Table 1. The structures of compounds 2–13 were confirmed on the basis of spectral data and elemental analysis.

In the condensation reaction of 4-amino-5-benzoxyisoxazole-3-carboxamide (1) with selected α-methylene ketones such as acetophenone, p-bromoacetophenone in the presence of catalysts ZnCl₂ or In(OTf)₃ under conventional heating (method B) or under microwave irradiation (method C), the respective substituted 7-phenylisoxazolo[4,5-b]pyridine-3-carboxamides 2–3 were obtained in good yields. The absorption bands at ν 1680 and 1580 cm⁻¹ in the IR spectrum indicate the presence of amide groups. In the 1H NMR spectrum of the compounds, multiplets appeared at δ 7.50–7.75 ppm, representing aromatic protons. The broad signals at δ 8.30 ppm correspond to protons of the amide groups.

Similarly, good yields of 7-phenylisoxazolo[4,5-b]pyridine-3-carboxamides derivatives 4–7 were isolated as a result of condensing amide 1 with selected β-diketones (acetylacetone, benzoylaceton, α-acetylacetanilide, dibenzoylmethane, 1,1,1-trifluorooctylaceton and 1-chloro-1,1-difluoroacetylacetone), carried out by the investigated methods. The 1H NMR spectra of compounds 4–7, apart from the signals of aromatic protons, showed a singlet at δ ~ 2.48–2.60 ppm, for two protons of the group and two broad signals for CONH₂. The IR spectrum of these products contains the absorption band of the carbonyl group at ~ 1700 cm⁻¹ and the frequency amide I and II at 1680 and 1610 cm⁻¹.

O-amino ketone 1 was then subject to Friedländer condensation under the same reaction conditions, with selected β-keto esters: ethyl acetoacetate, ethyl benzoylaceton and ethyl 2-chloroacetoacetate, to obtain cyclic product derivatives 8–12. The structures of compounds 8–12 were confirmed on the basis of spectral data and elemental analysis. For example, the IR spectrum contained strong absorption bands for the CONH₂ group at 1690 and 1570 cm⁻¹. The 1H NMR spectrum showed a triplet and quartet at δ = 1.05 and δ = 4.20 ppm respectively for ethoxy protons, and a singlet at δ = 2.78 ppm for methyl protons. Aromatic protons appeared in the δ ~ 7.5–7.61 ppm range, and one broad singlet at δ=8.39 ppm corresponding to the protons of the CONH₂ group. Conventional heating of compound 1 with equimolar amounts of

![Fig. 1. Synthesis of poly-substituted isoxazolo[4,5-b]pyridines 2–13](image-url)
Synthesis of 3,5,6,7-Tetrasubstituted Isoxazolo[4,5-B]Pyridines

Malononitrile in the presence of ZnCl₂ (method B) or In(OTf)₃ (method C) as catalysts, or under microwave irradiation with these catalysts (method C) led respectively to 65% and 70% yields of 5-amino-6-cyano-7-phenylisoxazolo[4,5-b]pyridine-3-carboxamide (13). These results were identical to those reported by Gewald and Bellmann [22] but they were obtained using another method.

The IR spectrum of compound 13 showed a strong absorption band at 2200 cm⁻¹, which is characteristic for the CN group, and two absorption bands at 3100–3280 cm⁻¹ for the NH₂ group.

Biology

Antiproliferative activity in vitro

The results of the experiments, expressed as ID₅₀ (inhibitory dose 50%) values determined for given cancer cell lines for two compounds (5 and 6) are summarized in Table 2. The activity criterion adopted for the new compounds in the in vitro screening tests was an ID₅₀ level not exceeding 4 µg/cm³ [32]. Only 6-benzoyl-5,7-diphenylisoxazolo[4,5-b]pyridine-3-carboxamide (6) fulfills this criterion. Compounds 5 and 6 revealed the highest cytotoxic effect in vitro against colon cancer cell lines; their activity was close to the international activity criterion.

Table 1. A comparison of synthesis yields of poly-substituted isoxazolo[4,5-b]pyridine derivatives 2–13

<table>
<thead>
<tr>
<th>No</th>
<th>Carbonyl compound</th>
<th>Product</th>
<th>Yields (%) / time</th>
<th>Yields (%) / time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>ZnCl₂, In(OTf)₃</td>
<td>ZnCl₂, Microwave</td>
</tr>
<tr>
<td>1</td>
<td>acetylacetone</td>
<td>2</td>
<td>75%, 76% / 10 h</td>
<td>79% / 10 min</td>
</tr>
<tr>
<td>2</td>
<td>acetophenone</td>
<td>3</td>
<td>77%, 76% / 10 h</td>
<td>80% / 10 min</td>
</tr>
<tr>
<td>3</td>
<td>p-Bromoacetophenone</td>
<td>4</td>
<td>68%, 67% / 10 h</td>
<td>78% / 10 min</td>
</tr>
<tr>
<td>4</td>
<td>benzoylacetone</td>
<td>5</td>
<td>68%, 70% / 12 h</td>
<td>85% / 12 min</td>
</tr>
<tr>
<td>5</td>
<td>dibenzoylomethane</td>
<td>6</td>
<td>71%, 70% / 10 h</td>
<td>85% / 10 min</td>
</tr>
<tr>
<td>6</td>
<td>1,1,1-trifluoroacetacetone</td>
<td>7</td>
<td>68%, 72% / 10 h</td>
<td>86% / 10 min</td>
</tr>
<tr>
<td>7</td>
<td>1-chloro-1,1-difluoroacetacetone</td>
<td>8</td>
<td>75%, 76% / 10 h</td>
<td>80% / 10 min</td>
</tr>
<tr>
<td>8</td>
<td>acetyloacetanilide</td>
<td>9</td>
<td>67%, 76% / 12 h</td>
<td>80% / 12 min</td>
</tr>
<tr>
<td>9</td>
<td>ethyl acetooacetate</td>
<td>10</td>
<td>67%, 70% / 10 h</td>
<td>85% / 10 min</td>
</tr>
<tr>
<td>10</td>
<td>ethyl benzoylacetae</td>
<td>11</td>
<td>65%, 66% / 10 h</td>
<td>80% / 10 min</td>
</tr>
<tr>
<td>11</td>
<td>ethyl 2-chloroacetooacetate</td>
<td>12</td>
<td>63%, 66% / 10 h</td>
<td>70% / 10 min</td>
</tr>
<tr>
<td>12</td>
<td>malononitrile</td>
<td>13a</td>
<td>63%, 66% / 9 h</td>
<td>70% / 10 min</td>
</tr>
</tbody>
</table>

*Compound 13 was synthesized by Gewald and Bellmann in the presence of pyridine [22].

Table 2. The in vitro cytotoxic activity (ID₅₀ in µg/cm³) of the tested compounds against various tumor cell lines

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Compound/ID₅₀ in µg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>32.3 ± 1.0</td>
</tr>
<tr>
<td>6</td>
<td>17.0 ± 2.21</td>
</tr>
<tr>
<td>MES-SA</td>
<td></td>
</tr>
<tr>
<td>HCV29T</td>
<td>127.2 ± 1.30</td>
</tr>
<tr>
<td>KB</td>
<td>85.2 ± 1.25</td>
</tr>
<tr>
<td>SW707</td>
<td>3.9 ± 1.20</td>
</tr>
<tr>
<td>LoVo</td>
<td>41.8 ± 1.70</td>
</tr>
<tr>
<td>MCF-7</td>
<td></td>
</tr>
<tr>
<td>A549</td>
<td>39.4 ± 1.1</td>
</tr>
<tr>
<td>LLC</td>
<td></td>
</tr>
</tbody>
</table>

Summarizing, the authors have described a novel application of ZnCl₂ and In(OTf)₃ as catalysts for the synthesis of new isoxazolo[4,5-b]pyridines using conventional heating and microwave irradiation under solvent-free conditions. Only the condensation reaction of compound 1 with acetylacetonate, conducted in a solvent, produced the desired product. In the absence of catalysts the reactions did not proceed even after a long reaction.
time (48 h). Compared with conventional heating, the microwave method produced only slightly higher yields of the desired products, but in a much shorter time. It can therefore be concluded that the Friedländer condensation of 4-amino-5-benzoyl-isoxazole-3-carboxamide (1) with carbonyl compounds containing active α-methylene groups, conducted using both traditional and microwave techniques in the presence of catalysts, may be a convenient method for the synthesis of new isoxazolo[4,5-b]pyridine derivatives.

Among the compounds tested only 6-benzyol-5,7-diphenylisoxazolo[4,5-b]pyridine-3-carboxamide (6) fulfills the international activity criterion. Compounds 5 and 6 showed the highest cytotoxic effect in vitro against colon cancer cell lines and their activity was close to the international criterion. These two compounds could be selected for further advanced in vitro studies using a larger panel of human cancer lines of different tissue origin, and in vivo using an experimental mouse tumor model.

References

Address for correspondence

Krystyna Poreba
Department of Drug Technology
Wroclaw Medical University
Pl. Nankiera 1
50-140 Wroclaw
Poland
Tel.: +48 71 784 02 48
E-mail: krystyna.poreba@am.wroc.pl

Conflict of interest: None declared

Received: 9.11.2011
Revised: 15.06.2012
Accepted: 8.10.2012